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Large eddy simulation (2D) using di�usion–velocity method
and vortex-in-cell
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SUMMARY

A large eddy Simulation based on the di�usion-velocity method and the discrete vortex method is
presented. The vorticity-based and eddy viscosity type subgrid scale model simulating the enstrophy
transfer between the large and small scale appears as a convective term in the di�usion-velocity formu-
lation. The methodology has been tested on a spatially growing mixing layer using the two-dimensional
vortex-in-cell method and the Smagorinsky subgrid scale model. The e�ects on the vorticity contours,
momemtum thickness, mean streamwise velocity pro�les, root-mean-square velocity and vorticity �uc-
tuations and negative cross-stream correlation are discussed. Comparison is made with experiment and
numerical work where di�usion is simulated using random walk. Copyright ? 2004 John Wiley &
Sons, Ltd.

KEY WORDS: large eddy simulation; di�usion-velocity method; Smagorinsky subgrid scale model;
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1. INTRODUCTION

In recent works, the vortex method in a purely Lagrangian frame (particle representation)
has been developed in the context of large eddy simulation (LES) using the eddy viscosity
subgrid scale (SGS) model [1]. Both the Smagorinsky and dynamic eddy viscosity models
were implemented and the constants were obtained speci�cally for the vorticity equation.
In the particle representation, the eddy viscosity model was implemented by modifying the
strength of the particles using the integral approximation for the solution of the di�usion
equation [2], also denoted as the particle strength exchange (PSE). In other development,
Milane and Nourazar [3] and Milane and Nourazar [4] used the core-spreading technique
to simulate the di�usion equation in the context of a LES where the eddy viscosity SGS
vorticity model [5] and the SGS turbulent kinetic energy model [6] were tested, respectively.
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The core-spreading technique is valid in the limit of vanishing viscosity [7, 8]. Cottet [9]
presented subgrid scale model based on a rigorous analysis of truncation error of the �ltered
vorticity equation. The author developed a scheme based on the PSE method for small scale
contribution. The method was tested by removing all the backscatter produced by the �ow
strain.
The di�usion-velocity method is an alternative way for simulating the di�usion equa-

tion [10–14] and can be extended to an eddy viscosity based LES formulation. Originally,
Ogami and Akamatsu [10] introduced the method as an alternative to the random walk so-
lution of the di�usion equation in order the extend the solution to Reynolds number values
below the lower limit of applicability of the random walk. The authors [10] argued that the
di�usion-velocities being proportional to the negative of vorticity gradient and the kinematic
viscosity yield a net �ow of vorticity with a positive �ux from a region of higher vorticity
to a region of lower vorticity, consistent with the physics of di�usion. Recently, Beaudoin
et al. [14], using the di�usion-velocity method as an alternative to PSE method, concluded
that for anisotropic di�usion problems it is by far easier to derive than that of the PSE method.
The methodology that extends the di�usion-velocity method to a LES using an eddy vis-

cosity SGS model and solves the vorticity equation using the vortex method has not yet been
developed and tested. Therefore the objective of this study is to develop this methodology
and to show that it can simulate the dissipative e�ect of a SGS model. In the context of
a LES based on an eddy viscosity SGS model and on the vortex method, the importance
and advantage of the di�usion-velocity method stems from the fact that the �ltered vortic-
ity equation has fewer types of terms in comparison with the alternative where the terms
with the eddy viscosity are expanded as will be shown in Section 2.2.1. In vortex methods,
the di�usion-velocity method [10–13] has so far been used in two-dimensional calculations.
The encouraging previous results have motivated the present investigation which extends the
di�usion-velocity method to a LES based on eddy viscosity SGS models. The success of the
present study will warrant developing further the method to three-dimensional LES and DNS.
The feasibility of the method will be illustrated using the two-dimensional mixed Lagran-

gian-Eulerian vortex-in-cell (VIC) method applied to a spatially growing mixing layer and
using the Smagorinsky SGS model. The two-dimensional mixing layer is selected because
the trend in the �ow characteristics, i.e. the vorticity contours, momemtum thickness, mean
streamwise velocity pro�les, root-mean-square velocity and vorticity �uctuations and negative
cross-stream correlation have been previously obtained using the vortex method without SGS
modelling [15–17]. Therefore these trends can be used as a base to compare the present results.
Also the simulation of the 2D mixing layer using vortex method based on the di�usion-velocity
method without SGS modelling has not yet been reported. Furthermore the VIC method is used
because it combines the best features of Lagrangian and Eulerian methods, i.e. the numerical
dissipation is reduced relative to the purely Eulerian method [18–21] and the computational
time is reduced relative to the Lagrangian method. In the VIC method, Eulerian scheme is
used to calculate the velocity �eld and a Lagrangian scheme to track the vortices. The vortices
that represent �uid particles with concentrated vorticity (vortex points or blobs) are tagged and
traced in time. As time proceeds, the change of vorticity distribution within a blob is governed
by the vorticity transport equation. The justi�cation for this method stems from the fact that,
in turbulent �ows, vorticity is often very large in thin threadlike �uid, while the remaining
�uid is virtually without vorticity. Therefore, the vorticity can be lumped into concentrated
vortex blobs around which the �uid spins. The computational results will be compared with
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LARGE EDDY SIMULATION 839

experimental results of Masutani and Bowman [22] because the two-dimensionality of the
�ow was carefully maintained and veri�ed.

2. GOVERNING EQUATIONS

2.1. Vorticity equation

The continuity and vorticity transport equations for an incompressible and viscous �uid �ow
are, respectively,

@ui

@xi
=0 (1)

@!i

@t
+ uj
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@xj
=!j
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@xj
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@2!i
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where !i represents the component of the vorticity vector !, ui and uj represent the compo-
nents of the velocity vector u, and � is the kinematic viscosity. The left-hand side of Equation
(2) includes the rate of change of vorticity in time and due to convection, respectively. The
�rst term on the right-hand side is the vortex stretching term, and the second term on the
right-hand side is the viscous di�usion.
For a 2D �ow parallel to (x; y)-plane, the velocity vector is u= u(x; y; t), the vorticity

vector (!z) reduces to one component in the z-direction perpendicular to the (x; y)-plane, and
the stretching term vanishes. Therefore Equation (2) reduces to
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A di�erent form of vorticity equation can be written if the continuity (Equation (1)) is
combined with the vorticity equation (Equation (3)) assuming constant viscosity as
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Equation (4) is similar to the equation used by Ogami and Akamatsu [10] in the development
of the di�usion-velocity method.

2.2. Filtered vorticity equation

For any time- and space-dependent variable �(x; y; t), the spatial �ltered value �� is

��(x; y; t)=
∫∫

�(�; �; t)G(x − �; y − �) d� d� (5)

where G(x; y) is the spatial �lter shape. For a two-dimensional �ow, the velocity and vorticity
�elds are decomposed in the �ltered �eld (overline), and the subgrid-scale �eld
(superscript) as

!x =!′
x(x; y; t); !y=!′

y(x; y; t); !z= �!z(x; y; t) +!′
z(x; y; t)

u= �u(x; y; t) + u′(x; y; t); v= �v(x; y; t) + v′(x; y; t); w=w′(x; y; t)
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840 R. E. MILANE

In the above decompositions, �w= �!x= �!y=0 are needed for the 2-D formulation. The zero
value for the �ltered spanwise velocity, i.e. �w=0, together with the zero value for the span-
wise derivative of �ltered quantities, i.e. @(�)=@z=0, are needed in the calculations of the
modulus of the strain rate {Equation (16) in Section 2.2.2}. The zero values for �!x= �!y=0
is a direct consequence of �w=0 and @(�)=@z=0 in the de�nition of vorticity. In the two-
dimensional calculations, it means that the initial spanwise vorticity ( �!z) in the whole domain
remains in the spanwise direction throughout the simulation, therefore �!x= �!y=0 throughout
the simulation. The �ltered vorticity components �!x and �!y appears in the model for the
divergence of the SGS vorticity stress, i.e. Equation (13) in Section 2.2.1.
The �ltered continuity equation obtained using Equation (1) and the �ltered transport equa-

tion for the spanwise component �!z obtained using Equation (3) are (see for example Refer-
ence [1]), respectively,
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=0 (6)

@ �!z

@t
+ �u

@ �!z

@x
+ �v

@ �!z

@y
= v

@2 �!z

@x2
+ v

@2 �!z

@y2
− @Y

@x
− @Z

@y
(7)

where the divergence of the SGS vorticity stress Y and Z responsible for the transfer of
enstrophy between large and small scales are expressed as

@Y
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(u!z − �u �!z − w!x)

and

@Z
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=

@
@y
(v!z − �v �!z − w!y) (8)

Another form for Equation (7) is obtained using the continuity [Equation (6)], rearranging
the SGS and molecular di�usion terms as

@ �!z
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+

@{ �u+ (Y= �!z)− (�= �!z)(@ �!z=@x)} �!z

@x
+
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=0 (9)

In Equation (9), the SGS and the molecular di�usion terms are treated as convective terms.
This is similar to the procedure followed by Ogami and Akamatsu [10] in the development
of the di�usion-velocity method (see Equation (4) also).
Another equation used in the VIC method is derived using the de�nition of vorticity vector,

�!z=
@ �v
@x

− @ �u
@y

(10)

Since the divergence of the velocity is zero because of the continuity equation [Equation (6)],
therefore the components of the velocity u can be expressed as the gradients of a scalar, i.e.
gradients of the streamfunction  ,

�u=
@ 
@y

; �v=−@ 
@x

(11)
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Combining Equations (10) and (11), Poisson’s equation is obtained as

∇2 =− �!z (12)

The solution of Poisson’s equation is given by the Green’s function or the Biot–Savart [23].
It is equivalent to the solution obtained by u=( �u; �v) in the convective part of Equation (9).

2.2.1. Formulation with eddy viscosity based SGS Model. The two groups of terms Y and
Z in Equation (7), describing the contribution of the small scales are the SGS vorticity stress.
Their net e�ect is to transfer enstrophy from the large-scale to the small scale. By analogy
with the SGS Reynolds stress in the �ltered momentum, the SGS vorticity stress is modelled
using the eddy viscosity concept in such a way that its divergence appearing in Equation (7)
is expressed as [1]
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In two-dimensional calculations the last four terms in Equation (13) are nil. Therefore, Equa-
tion (13) implies that for an anisotropic �ow, −Y = �Tx@ �!z=@x and −Z = �Ty@ �!z=@y where �Tx
and �Ty are eddy viscosities in x- and y-directions, respectively. Substituting for Y and Z in
Equation (9) and rearranging
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(
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@x ; vd =− (�+�T )

�!z

@ �!z
@y

)
that are added to the convective velocity are the

components of the di�usion-velocity governed by both molecular di�usion and eddy viscosity
from SGS model. It is noted that the non-linearity of the di�usion term in LES is a conse-
quence of the eddy viscosity in the SGS model which is related to the �ow �eld rather than
the di�usion-velocity method itself. In DNS application, the di�usion-velocity method yields
a linear di�usion term.
As an alternative to Equation (14) which will result in a di�usion term that could be treated

using the PSE scheme or other schemes, the two terms with SGS eddy viscosity on the LHS
of Equation (14) can be expanded as
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The �rst two terms on the RHS corresponding to the second-order derivatives of vorticity
could be solved using either one of the three methods, i.e. the PSE scheme or the core
spreading technique or the random walk method. The performance of these methods in LES
is left to future studies, keeping in mind that the core spreading technique is limited to
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cases of vanishing viscosity [7, 8] and the random walk is limited to high Reynolds number
�ows [24]. Furthermore in the context of LES based on eddy viscosity SGS models and
the vortex method, Equation (15) suggests that the di�usion-velocity method is advantageous
because one type of terms on the LHS has to be solved rather than two types of terms on
RHS, i.e. terms with second-order derivatives of vorticity and terms with product of �rst-order
derivatives of eddy viscosity and vorticity.

2.2.2. Smagorinsky SGS model. The constant in SGS model is function of the type of gov-
erning equations (vorticity or momemtum) and of the SGS model used. A few works using the
vorticity equation are available. Mans�eld et al. [1] obtained the constant in the Smagorinsky
SGS model by balancing enstrophy production and dissipation for homogeneous and isotropic
�ow. Therefore it has been adopted in this study. Furthermore the Smagorinsky SGS model
has been extended to anisotropic �ow [25, 26] as

�Tx=C2r (�
3)2=9�4=3

x (2SijSij)1=2

and

�Ty=C2r (�
3)2=9�4=3

y (2SijSij)1=2 (16)

where S| ≡ (2SijSij)1=2 is the modulus of the strain rate and the constant Cr = 0:12. Equa-
tion (16) is an extension of Smagorinsky model developed for isotropic �ow to anisotropic
�ow by simply using di�erent �lter sizes �x and �y, in x- and y-directions, respectively,
�= (�x�y)1=2. The �lter sizes are a multiple (¿1) of grid sizes. The Smagorinsky subgrid
model was used even though it is too dissipative (see for example Reference [27]) because
the objective of this study is to show that the di�usion-velocity method can simulate the
dissipative e�ect of a SGS model. If so, it is expected that any other eddy viscosity based
SGS model (non-dynamic and dynamic) would behave qualitatively in the same fashion.

3. VORTEX-IN-CELL

The vorticity �eld is discretized into a set of vortex particles. The motion of the vortex
particles is governed by the vorticity transport equation [Equation (14)]. The discretization of
the �eld into vortex particles will be discussed in Section 3.1. In the vortex-in-cell method,
the vorticity is transferred from the vortex particles to the nodes of a two-dimensional grid,
using an interpolation technique. This step will be discussed in Section 3.2. The motion of
the vortex particles is traced by splitting the vorticity transport equation into substeps. In the
�rst substep, the convection of the interacting vortex particles is obtained by �rst calculating
the components of the velocity u=(u; v) at the nodes by solving the Poisson’s equation
[Equation (12)]. Then the components of the di�usion-velocities are calculated at the nodes
as (−(�+ �T )= �!z(@ �!z=@x);−(�+ �T )= �!z(@ �!z=@y)). The velocity components u=(u; v) at the
nodes and the di�usion-velocities are transferred to the location of each vortex particle, using
an interpolation technique. Then the vortex particles are convected using the equation of
motion of a material point using a two-step viscous splitting algorithm. This step will be
discussed in Section 3.3. No additional substep is needed for the velocity-di�usion method.
However a second substep has been considered in this study in simulating the molecular
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di�usion term without SGS model using random walk. In this case the di�usion-velocity
term is replaced by the random walk. A comparison between the two methods is made in
Section 6.3. Also a regridding procedure used to improve the accuracy of the calculations
by inserting or removing vortex particles whenever the distance between two neighbouring
vortex blobs is outside a range speci�ed by a criteria was implemented [28]. The procedure
was tested on runs without SGS model. The e�ect on the mixing layer �ow characteristics
were small probably because the number of vortex particles used was high. Therefore the
regridding procedure was not used in the runs presented in this study in order to reduce the
computational time.

3.1. Vortex particles

In vortex methods, the vorticity �eld is discretized into Np point vortices, each with circulation
�i, and the vorticity �eld is given as

!(x)=
Np∑
i=1
�i�(x − xi) (17)

where �(x) is the Dirac delta function, x represents the co-ordinates at which vorticity is
calculated and xi is the co-ordinates position of the vortex points. The point vortices are
vortex blobs rather than vortex points because the Biot–Savard law, i.e. the Green’s function,
has a singularity at the origin. It creates large velocities in its neighbourhood, which causes
numerical as well as theoretical instabilities. To remove this di�culty, �nite core size vortices
or blob vortices may be used instead of point vortices [24]. Thus inside the core, velocity is
smooth and is �nite at the centre of the core. Although this trick creates some errors, it is
very e�ective in removing the singularities from the �ow �eld. By using this technique the
velocity �eld induced by each vortex is quantitatively correct, only away from the centre of
the vortices. In the vortex blob approach, the particles have a core radius � (in VIC � is
equal the grid size), a volume ��i and a vorticity vector of magnitude !i smoothened within
the volume ��i. For a given vortex particle, the circulation �i is identical to the product of the
vorticity and the volume of the vortex particle, !i��i, which also represents the contribution
of the vortex particle to the vorticity �eld. Therefore each vortex particles, is completely
characterized by (x;�i) and the vorticity �eld is given as

!(x)=
Np∑
i=1
�i��(x− xi) (18)

where the smoothing function �!(x− xi) is expressed as

��(x− xi)= 1
�2

�
(
x− xi

�

)
(19)

with
∫
�(x) dx=1. For the present 2D formulation, the vorticity �eld is given as

!(x)=
1
�2

Np∑
i=1
�i�

(
x − xi

�

)
�
(
y − yi

�

)
(20)

where [(x − xi)=�; (y − yi)=�] are the co-ordinates distance in units of core size.
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3.2. Interpolation scheme

The smoothing functions used are the area-weighing scheme [29],

�(�)= (1− |�|); |�|¡1 (21a)

and the M ′
4 scheme, a higher order scheme [8],

�(�)=




1− 5
2

|�|2 + 3
2

|�|3; |�|¡1
1
2
(2− |�|)2(1− |�|); 1¡|�|¡2

0; |�|¿2

(21b)

Results obtained from the two schemes will be compared in Section 6.2. The interpolation
scheme [Equations (20) and (21a–b)] is used to transfer the vorticity from the vortex blobs
to the nodes of the grid. A vortex blob contributes to the nearest 4 nodes and 16 nodes for
the area-weighing scheme and the M ′

4 scheme, respectively. The total vorticity at each node
is obtained by summing the vorticity contributions of all the vortex particles which are within
one grid or two grids from that node for the area-weighing scheme and the M ′

4 scheme,
respectively. Also since there are at least one vortex blob per grid, therefore the vortex blobs
will always overlap. The position vector of the vortex blob centre is determined by (xi; yi)
and is discussed in the next section.

3.3. First substep

The Poisson’s equation, (Equation (12)), is solved in order to obtain the velocity components
at each node, using the successive-over-relaxation method with central di�erence approxi-
mation for the derivatives [15], also called the extrapolated Liebmann’s method. Once the
components of the velocity at the nodes un=(un; vn) are calculated, the components of the
velocity ui=(ui; vi) acting on the centre of the vortex blob, is calculated using the interpolation
technique as

ui =
∑
n
un�

(
xi − xn

�

)
�
(
yi − yn

�

)
(22a)

vi =
∑
n
vn�

(
xi − xn

�

)
�
(
yi − yn

�

)
(22b)

where n is representative of the nearest 4 nodes or 16 nodes surrounding the vortex blob in
the area-weighing scheme or the M ′

4 scheme, respectively. The position vector of the vortex
blob centre �=(xi; yi) is calculated by integrating the equation of motion of a material point

d�=dt= u(�(x; y; z; t)) (23)

using the improved Euler’s method where the predictor is

�∗(t +�t)= �(t) + u�t (24a)

and the corrector is

�(t +�t)= �(t) + (u+ u∗)�t=2 (24b)
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�t is the time-step and the velocity u= ui. To implement Equations (24a) and (24b), the
calculations are carried out in two steps within each time step. In the �rst step, the algorithm
is executed using the predictor, Equation (24a). At the end of this step, the values are denoted
by the superscript (*). Then, the algorithm is repeated using the corrector, Equation (24b).
Two values of each variables are stored at each time-step, i.e. the old value at time t and the
predicted value denoted by (*). At the end of the calculations, the old value is replaced by
an updated value at time t +�t.
After completing the above operation, the components of the di�usion-velocities are calcu-

lated at the nodes, (udi=−(�+�T )= �!z@ �!z=@x; vdi=−(�+�T )= �!z@ �!z=@y), and transferred to the
centre of the vortex blob using Equations (22a) and (22b) and the position vector of the vor-
tex blob is calculated using Equations (24a) and (24b) in which u= udi. The di�usion-velocity
could be unreasonably high in regions of small vorticity and non-zero vorticity gradient be-
cause it is inversely proportional to the vorticity. This problem is remedied by setting the
components of the di�usion-velocity to zero whenever the vorticity at the nodes is less than
0.1% of the vorticity associated with vortex particle.
Here it is noted that the solution of the Poisson’s equations together with the Lagrangian

movement of the vortex particles is equivalent to the solution of the convective term u=( �u; ��)
in Equation (14).

3.4. Second substep: random walk

For the case without SGS model, the di�usion term in Equation (7) is

v
(
@2 �!z

@x2
+

@2 �!z

@y2

)

This term can be simulated using random walk for high Reynolds number [24]. This is handled
by superimposing on the motion due to the convection of the vortices from the �rst substep
(without the contribution of the di�usion-velocity), the random walk using �rst the predictor
Equation (24a) as

�∗(t +�t)= �(t) + u�t + �1 (25a)

then the corrector (Equation (24b)) as

�(t +�t)= �(t) + (u + u∗)�t=2 + �2 (25b)

where u= ui ; �1 and �2 are obtained from a Gaussian distribution with zero mean and standard
deviation (2��t)1=2.

4. BOUNDARY AND INITIAL CONDITIONS

The computational domain in Figure 1 consists of a rectangular grid with uniform grid size
in each direction and in general (�x �= �y). The lower left corner of the grid is located at x=1
and y=1. The boundary conditions for LES are the same as for the un�ltered case because
they are assumed to be governed by the large scale. The Neumann conditions apply to the
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Inflow velocity profile Outflow velocity profile

Slip wall boundary 

Slip wall boundary 

(1,1)

(1,N)

(M,1)
(0,0)

x
y

Splitter plate

δy

δx

UH

UL

Point
vortices

Figure 1. Computational domain, rectangular grid, initial position of the vortices,
and boundary conditions.

in�ow and out�ow boundaries with  =0 at y=0. The in�ow and out�ow streamfunction
pro�les correspond to pro�les of velocity that are error functions in such a way that

(@ =@y)N; j=(�U=2) erf{�(y − yov)=(x − xv)}+Uc (26)

where subscript N =1 and M correspond to the node in the x-direction at in�ow and out�ow,
respectively, j corresponds to the node in the y-direction, �U =UH − UL is the velocity
di�erence across the layer, UH and UL are the velocities of the high-speed side and the low-
speed side, respectively, yov is the ordinate of the centreline, xv is the virtual origin, � is
the spreading parameter and Uc = (UH + UL)=2 is the average velocity. In addition in order
to simulate the Kelvin–Helmholtz instability mechanism, the pro�le may be augmented by
a perturbation based on linear stability analysis [30]. Another approach that does not rely
on stability analysis may be used as discussed in Inoue [16]. In vortex method, the Kelvin–
Helmholtz instability may be simulated by moving vertically the vortex closest to the edge
of the splitter plate by a small distance (perturbation) given by a sinusoidal function of time
operating at the fundamental frequency (f) of the unforced mixing layer as

y(t)=Ax sin(2	ft) (27)

where A=0:5Uc�t is the amplitude and x represents a small percentage of A (x=3:0% in
this study). The fundamental frequency f is calculated using f
i=(2Uc)≈ 0:02 [31] where 
i
is the momentum thickness at the beginning of the region of linear growth. The factor A has
been used by Inoue [16] where a forced mixing layer was investigated. In this study the small
value of x=3:0% introduced ensures that the mixing layer is in the unforced mode.
Also rather than specifying an error function as the out�ow boundary condition, i.e. Equa-

tion (26), the convective out�ow boundary condition was considered. Comparison of the
results of momemtum thickness obtained using Equation (26) at out�ow with the ones ob-
tained using the convective out�ow boundary condition, i.e. without Equation (26), showed
no signi�cant di�erence up to x=H ≈ 0:25 cm, after which the momentum thickness growth
rate is faster without Equation (26). The error function out�ow boundary condition has been
adopted because it constrains the growth rate of the momentum thickness, and yields a slope
for the linear growth region in close agreement with the experiment [15].
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Furthermore, slip conditions are assumed for the top and bottom boundaries. The Dirichlet
condition is used for the bottom boundary at yL =1, consistent with  i;0 = 0 at y=0, as

 i;1 =yLUL (28)

and for the top boundary

 i;N =ULysp +UH(yi;N − ysp) (29)

where ysp is the splitter plate y location and N corresponds to the nodes at the top boundary.
Initially, the velocity discontinuity across the splitter plate is simulated using a vortex sheet,

discretized into a row of point vortices as shown in Figure 1. At time t=0, the point vortices
are equidistant, and separated by a distance d=H=Nv, where Nv is the number of vortices
and H = �xM is the computational domain length. The vortex closest to the edge of the
splitter plate is moved vertically using Equation (27) to initialize the Helmholtz instability.
The un�ltered total circulation in the computational domain is H (UH−UL). The circulation is
equally distributed among the Nv vortices as �i=H (UH−UL)=Nv =d(UH−UL). Furthermore,
if at the end of each time step �t, de�ned as the characteristic time �t=d=Uc, a vortex with
circulation �i is introduced at the trailing edge of the splitter plate, the vorticity generation
rate is �i=�t=(UH − UL)Uc and therefore the Kutta condition is satis�ed. The oldest vortex,
i.e. the vortex with the largest residence time, is discarded from the calculations when a new
vortex is introduced at the edge of the splitter plate. Furthermore, the vortices can move
freely in and out through the out�ow boundary to avoid the collection of vortices at the end
of the computational domain. The motion of the vortices outside the computational domain
is assumed to be governed by the velocity at the out�ow boundary.
In the LES, the initial circulation of the vortices should be �ltered. However approximating

the vorticity �eld using Equation (20) corresponds to �ltering the circulation of each vortex
�i using the smoothing function �(x−xi) [1, 9]. As noted earlier, in vortex method, smoothing
or �ltering has been used in order to remove the singularity in Biot–Savard law. Therefore the
vorticity �eld given by Equation (20) is interpreted as the �ltered vorticity �eld used in LES.
Two questions remain to be addressed, the correspondence between the smoothing function
and the LES �lter shape and between the core size used in the smoothing function and the
�lter size �. Regarding the former issue, it is noted that for the Smagorinsky model no �lter
shape is invoked explicitly, therefore the smoothing function could be any of the ones used
in VIC, such as area-weighing scheme or the M ′

4 scheme. Regarding the latter issue, the �lter
size is proportional to the core size since both are proportional to the grid size (the core
size=grid size in VIC).

5. SOLUTION PROCEDURE FOR DIFFUSION-VELOCITY METHOD

The solution procedure to solve the velocity and vorticity �elds consists in the following
steps:

(a) Initializing by placing the equidistant vortices at the level of the splitter plate and
by assuming arbitrary values for  at the internal nodes together with the boundary
conditions [Equations (26)–(29)].
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(b) Distributing the vorticity from the vortex particles to the nodes using the interpolation
scheme [Equations (20) and (21a–b)].

(c) Solving the Poisson’s equation [Equation (12)], using a Gauss–Seidel iteration with a
left-to-right sweep of the nodes and bottom-to-top sweep of the lines. Iteration con-
vergence is obtained when the percent di�erence between consecutive  is less than
0.001%.

(d) Computing the velocities u and v at the nodes using Equation (11).
(e) Calculating the velocities at the location of each vortex (un; vn) using the interpolation

scheme [Equations (22a–b)].
(f) Updating the co-ordinates of the vortices using Equations (24a–b).
(g) Computing the SGS eddy viscosity using Equation (16).
(h) Computing the di�usion-velocity at the nodes (−(�+ �T )= �!z@ �!z=@x;−(�+ �T )= �!z@ �!z=

@y).
(i) Calculating the di�usion-velocity at the location of each vortex using the interpola-

tion scheme [Equations (22a–b)] where (un; vn) are replaced by (−(�+ �T )= �!z@ �!z=@x;
−(�+ �T )= �!z@ �!z=@y).

(j) Updating the co-ordinates of the vortices using Equations (24a–b).
(k) Introducing a new vortex at the edge of the splitter plate, and discarding the oldest

one.
(l) Marching in time by repeating the calculations from step b to k.

The �rst and second derivatives are calculated using fourth-order central di�erence formulas.

6. FLOW FIELD RESULTS

Several numerical experiments were conducted to validate the method. The di�usion-velocity
method simulating molecular di�usion without SGS model, in conjunction with the vortex-
in-cell method has not yet been presented in previous literature. Therefore the method will
be �rst validated by comparing with the experimental mixing layer data of Masutani and
Bowman [22] (MB), because the two-dimensionality of the �ow was carefully maintained
and veri�ed, and also by comparing with a numerical experiment where molecular di�usion
is simulated using random walk. Results obtained using the area-weighing scheme and the
M ′
4 scheme are compared. Then LES results based on the di�usion-velocity method and the

Smagorinsky subgrid scale model were obtained. Several �ow characteristics are reported and
compared, vorticity contours, mean velocity pro�les, root-mean-square (rms) longitudinal and
lateral velocity �uctuations, Reynolds shear stress, and rms vorticity �uctuations.

6.1. Flow and numerical parameters

The velocity ratio is r=UL=UH =0:5 (ratio of the lower velocity side of the splitter plate to
the higher velocity side) with the free stream velocity above the splitter plate UH =600 cm=s
and below the splitter plate UL =300 cm=s, similar to the parameters used in the experiment
of MB. The spreading rate is �=35 for r=0:5 [32]. The ordinate ysp = 33 cm corresponds
to the edge of the splitter plate in Figure 1. For the boundary condition [Equation (26)], the
ordinate yov =ysp at in�ow and yov = 32 cm at out�ow. The reported results are for a viscous
�ow condition with �=14:5× 10−2 cm2=s (the kinematic viscosity of air at 18◦C).
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The computational domain for the base run consists in a 256× 256 anisotropic grid with
equidistant grid, �x=0:5 cm and �y=0:25 cm. The aspect ratio axy= �x=�y=2:0 is consistent
with axy=2:0 used by Deardo� [33] and axy=3:7 used by Shumann [34] in LES of channel
�ow. Also Kaltenbach [35] has reported that the representation of shear �ows is most econom-
ical when anisotropic grid (i.e. axy¿1) is used because it produces adequate values for ratios
of Reynolds stresses. Also a numerical experiment using an isotropic grid, �x= �y=0:25 cm
with 512× 256 grid, and using the same computational domain size as the base run, is re-
ported. The area-weighting scheme was used in the base run. For all LES, the �lter sizes are
set to twice the grid size in each direction, i.e. �x=2�x and �y=2�y.
At the level of the splitter plate, the shear layer is discretized into a layer of Nv = 10 240

equidistant vortex particles. Therefore, the circulation of each vortex is �i=37:5× 10−5 m2=s,
and the time step �t=d=Uc=27:7× 10−6 s. Nv = 10 240 means that there are 40 vortices
(40=10 240=256) in one grid. Sensitivity of the results to the number of vortices was tested
on the base run using Nv = 2560, i.e. 10 vortices per grid. No signi�cant di�erence between
Nv = 10 240 and Nv = 2560 was found. In this study, the number of vortices is Nv = 10 240
for all the reported runs.
The �ow is allowed to develop for two residence times (i.e. 2M time-steps) before the

statistical calculations are started. Then the mean �ow is obtained using time-averaging over
the next nine residence times, and the rms velocity �uctuations, the negative cross-stream
correlation and the rms vorticity �uctuations are calculated using time-averaging over the
next twenty �ve residence time. The numerical experiments are conducted on a DEC Alpha.

6.2. Di�usion-velocity method without SGS

The streamwise mean velocity normalized as (U −UL)=(UH−UL) is shown in Figure 2(a) as
a function of the similarity variable �v = (y−y0)=(x−xv) at four downstream locations, where
U is the streamwise mean velocity, y0 is the ordinate of the velocity centreline at location x,
the virtual origin de�ned as the x-location at the intersection of the velocity centreline with the
horizontal line at the level of the splitter plate is 4:01 cm for all the runs with the di�usion-
velocity method. Figure 2(a) shows that the agreement with the experiment of MB [22]
(dark symbols) is adequate. The results of the numerical simulation are presented in the
self-preserving region, which is from x=20–70 cm, i.e. 0:16¡x=H¡0:6. The self-preserving
region corresponds to the region of linear growth of the momemtum thickness. Figure 9(b)
shows the momentum thickness 
 as a function of x=H for several cases. For the case without
SGS (symbol �), a region with a nearly linear growth is identi�ed between 0:16¡x=H¡0:6,
where the slope is equal to about 0.0155. This value is close to the experimental value 0.0165
of MB.
The rms longitudinal (rmsu’) and lateral (rmsv’) velocity �uctuations normalized with �U

are shown in Figures 2(b) and 2(c), respectively, and the Reynolds shear stress (−u′v′)
normalized with �U 2 is shown in Figure 2(d). Self-preserving pro�les are obtained for
0:166 x=H6 0:6. The rmsu’ is shown together with the data from the MB. The values for the
rmsu’ in the simulation slightly increase along the streamwise direction whereas it decreases
in the experimental data. Similar behaviour is found in the numerical work of Ghoniem and
Heidarinejad [17], who argued that the experimental trend is caused by dissipation due to
molecular di�usion. The rmsv’ is consistent with previous 2D simulation [15–17]. The data
for (−u′v′)=�U 2 are not reported in MB. However the peak values (−u′v′)=�U 2 = 0:012 in
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Figure 2. Normalized pro�les at four downstream locations for case without SGS: (a) mean streamwise
velocity, (b) rms longitudinal velocity �uctuations, (c) rms lateral velocity �ucations, (d) negative
cross-stream correlation. The mesh lines connecting the open symbols show the predicted pro�les; the

dark symbols correspond to the data from the experiment of MB.

Figure 2(d) is comparable with the peak of 0.013 obtained in the experiment of Oster and
Wygnanski [31] for a velocity ratio of r=0:6, which is slightly di�erent than the value of
r=0:5 used in the present simulation.
Furthermore it is necessary to verify the sensitivity of the results to aspect ratio because

results from LES are function of aspect ratios [35], particularly if they exhibit inhomogeneities
of mean quantities as the mixing layer considered in this study where rmsu′=rmsv′ ≈ 0:82. Fig-
ures 3(a)–3(d) show that rmsu′=�U; rmsv′=�U;−u′v′=�U 2, and rms!′, respectively, are quite
insensitive to aspect ratios tested. The rms vorticity �uctuations (rms!′) has been reported in
Figure 3(d) because the e�ect of LES on this quantity will be discussed in Section 6.5.
Figures 4(a)–4(d) show the rmsu′=�U; rmsv′=�U;−u′v′=�U 2, and rms!′ pro�les for both

the area-weighting scheme and the M ′
4 scheme. The peak of the rmsu

′=�U is slightly lowered
when the M ′

4 scheme is used, whereas the peak of the −u′v′=�U 2 is slightly higher as
shown in Figures 6(b) and 6(d), respectively. The agreement between the pro�les of the two
schemes for the mean in Figure 6(a) and rmsv′=�U in Figure 6(c) is closer than rmsu′=�U
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velocity �uctuations, (c) negative cross-stream correlation, and (d) rms velocity �uctuations

for case without SGS at x=H = 0:6.

and −u′v′=�U 2 pro�les. However the �gures suggest that the sensitivity of the pro�les to
the smoothing function is quite small probably because the number of vortex particles used
is high. Therefore the M ′

4 scheme was not used in evaluating the di�usion-velocity method
with SGS model in the interest of reducing the computational time. The computational time
is reduced by about 10% when the area-weighting scheme is used in comparison with the M ′

4
scheme. The test using the M ′

4 scheme was conducted with a view that a better representation
of vorticity on the nodes would improve the calculations of the di�usion-velocity. However
from a practical point of view and for the mixing layer tested, the area-weighting scheme is
adequate for the qualitative assessment of the di�usion-velocity method and will be used in
remaining numerical experiments.

6.3. Comparison of di�usion-velocity method with random walk

The results of the di�usion-velocity method simulating the di�usion term is further validated
by comparing with the results obtained using random walk. The virtual origin xv = 2:55 cm
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4 scheme using di�usion velocity method without

SGS model at two downstream locations; (a) streamwise mean velocity, (b) rms longitudinal velocity
�uctuations, (c) rms lateral velocity �uctuations; (d) negative cross-stream correlation. Dark symbols,

M ′
4 scheme; open symbols, area-weighting scheme.

when random walk is used. Figures 5(a)–5(d) show (U − UL)=(UH − UL), rmsu′=�U; rmsv′=
�U , and −u′v′=�U 2, respectively, at two downstream locations, x=H =0:5 and 0.6. The
di�erence in pro�les due to the di�erent methods is quite small. This di�erence is attributed
to the di�erent numerical errors in the two methods. No further elaboration is made in this
study. The agreement between the pro�les of the two methods provides further validation that
the di�usion-velocity method is adequate.

6.4. LES run

Figures 6(a)–6(d) show (U − UL)=(UH − UL); rmsu′=�U; rmsv′=�U , and −u′v′=�U 2, respec-
tively, for LES with Smagorinsky SGS model and Cr = 0:12. The mean in Figure 6(a) indicates
adequate self-similar pro�les at four downstream locations between 0:16¡x=H¡0:6. This is
consistent with nearly linear development of momemtum thickness in Figure 9(b) (symbol ).
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The rmsu′=�U; rmsv′=�U , and −u′v′=�U 2 also show adequate similarity. However, the
Reynolds shear stress −u′v′=�U 2 in Figure 6(d) shows better similarity, similar to the mean
in Figure 6(a). This is compatible with the fact that −u′v′ is linked to the mean �ow by
the mean momemtum equation and the self-similarity of the mean in Figure 6(a) is as good
as −u′v′=�U 2. It is noted that the pro�les in Figures 6(a)–6(d) are not fully self-similar.
This is consistent with the investigation of [27], who conducted LES based on the �ltered
Navier–Stokes equations and where tests using six non-dynamic and dynamic SGS models
showed that the pro�les are not fully self-similar.

6.5. Comparison of LES runs with run without SGS

Comparison between four runs is made: without SGS, Smagorinsky SGS using Cr = 0:12,
Smagorinsky SGS using Cr = 0:18, and Smagorinsky SGS with Cr = 0:12 using an isotropic
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grid. The �rst three runs are conducted on an anisotropic grid. The case with Smagorinsky SGS
using Cr = 0:18 is more dissipative than the case with Cr = 0:12 and therefore was chosen to
verify whether the di�usion-velocity method predict the dissipative e�ect of SGS model. The
isotropic case has �ner grid in the x-direction only and generates a lower eddy viscosity from
SGS model. It is compared with the anisotropic case, with a view to verify whether a lower
eddy viscosity leads to less dissipation and therefore validate further the dissipative nature of
the di�usion-velocity method when used in conjunction with a SGS model. Figures 7(a)–7(c)
show the downstream evolution of the spanwise vorticity contours for the three cases with
same anisotropic grid. The contours spread in the free stream as they develop from the edge
of the splitter plate. The maximum contour level decreases as SGS model is applied consistent
with its dissipative nature (see legend). It is 1800 for the case without SGS in Figure 7(a),
1500 for the case with Smagorinsky using Cr = 0:12 in Figure 7(b), and 1200 using Cr = 0:18
in Figure 7(c). Close up of selected downstream location are shown in Figures 8(a)–8(c)
which are drawn using identical scale. Figure 8(a) without SGS indicates that the contour
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Figure 7. Vorticity contours for cases (a) without SGS, (b) with Smagorinsky SGS using Cr = 0:12,
(c) with Smagorinsky SGS using Cr = 0:18. Contour level increment is 100.

peaks at 800, whereas it drops to 400 and 200 when the SGS with Cr = 0:12 and 0.18 are
used, respectively. The contour levels are further apart when SGS model is used. Therefore, in
the context of the di�usion-velocity method, the SGS model is dissipative because it decreases
the contour peaks and yields coarser contour lines.
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Figure 8. Vorticity contours at selected downstream location for cases (a) without SGS, (b) Smagorinky
SGS (Cr = 0:12); (c) Smagorinsky SGS (Cr = 0:18). Contours level increment is 100.

The pro�les of the various statistics are shown in Figures 9(a) and 10(a)–10(d) at down-
stream location x=H =0:6 for the three cases discussed in the previous paragraph and the
additional case with isotropic grid. For the anisotropic cases, the mean in Figure 9(a) indi-
cates that SGS model has a slight e�ect. This e�ect is clari�ed by the trend of momemtum
thickness in Figure 9(b). The momemtum thickness growth is slightly slowed down as the
dissipative e�ect of SGS is increased or equivalently as the eddy viscosity from SGS model is
increased (see peak �Tx=� for anisotropic cases in Table I). Comparison of the isotropic case
(symbol ◦) with the anisotropic case (symbol ) indicates that the growth of the momemtum
thickness is faster for the isotropic case because of lower eddy viscosity (see peak �Tx=� in
Table I).
Figures 10(a)–10(b) shows that the peaks and the pro�les of rmsu′=�U and rmsv′=�U are

lowered as the e�ect of SGS is increased by increasing eddy viscosity. The quantity rms!′ in
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Figure 9. E�ect of Subgrid Scale on (a) streamwise mean velocity at x=H = 0:6; (b) downstream
evolution of momemtum thickness.

Figure 10(d) is lowered as the e�ect of SGS is increased, consistent with the lower contour
level peaks in Figures 7(a)–7(c) and 8(a)–8(c). The Reynolds shear stress −u′v′=�U 2 is
less a�ected by SGS, consistent with being linked to the mean in Figure 9(a) by the mean
momemtum equation and the mean �ow is slightly a�ected by SGS. Furthermore, Table I
shows that the ratio rmsu′=rmsv′ for LES with anisotropic grid is closer to the cases without
SGS than the LES with isotropic grid. This is one of the justi�cation for using an anisotropic
grid in LES [35]. Furthermore in Figure 10(a), the peak value and the pro�le trend of the
rmsu′=�U without SGS agree well with the experimental data of MB at one location x=6cm
as shown in Figure 2(b), whereas the peak value and the pro�le trend of the rmsu′=�U with
SGS and Cr = 0:18 agree well with the experimental data of MB at three downstream locations
x=13, 16 and 19cm as can be inferred by comparing Figure 10(a) with Figure 2(b). However,
direct comparison between the un�ltered experimental data of MB and the LES results (�ltered
results) is unwarranted. Therefore comparison between LES results and experiment of MB
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Figure 10. E�ect of constant in SGS model and grid on (a) rms longitudinal velocity
�uctuations, (b) rms lateral velocity �uctuations, (c) negative cross-stream correlation,

(d) rms vorticity �uctuations at x=H = 0:6.

Table I. E�ect of SGS and grid on instantaneous peak �Tx=� and rmsu′=rmsv′ at x=H =0:6.

Peak �Tx=�
Cr Grid of last time-step rmsu′=rmsv′

0 (without SGS) isotropic (�ne) 0 0.817
0 (without SGS) anisotropic (coarse), � 0 0.817
0.12 anisotropic (coarse), 18 0.82
0.18 anisotropic (coarse), O 58 0.804
0.12 isotropic (�ne), ◦ 6 0.773

has been avoided. It should be noted that the experiment of MB has been chosen in this study
because the two-dimensionality of the �ow was carefully maintained and veri�ed and also to
compare the present results with the simulation [17] who predicted the experiment of MB as
discussed in Section 6.2.
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7. CONCLUDING REMARKS

An incompressible LES based on the di�usion-velocity method for the vorticity equation and
an eddy viscosity SGS model has been developed. In the context of the vortex method,
the SGS terms in the vorticity equation produce convection of vortex particles governed by
the di�usion-velocity. The two-dimensional vortex-in-cell in conjunction with the Smagorinsky
SGS model has been used to calculate the �ow �eld. The technique has been used to calculate
the �ow characteristics of spatially developing mixing layer. The di�usion-velocity requires
one constraint, i.e. nullifying it in regions of small vorticity and non-zero vorticity gradient.
The results by the di�usion-velocity method are in reasonable agreement with those of the

random walk, a fundamentally di�erent approach, when the SGS model is not used. The self-
similarity of the mean streamwise velocity, rms velocity �uctuations and Reynolds shear stress
pro�les is consistent with previous numerical simulation when the SGS model is used. The
dissipative e�ect of the SGS model produced by the di�usion-velocity was demonstrated by
the slower momemtum thickness development, lower contour values and cross-stream pro�les
for spanwise vorticity, lower cross-stream pro�les for rms longitudinal and lateral velocity
�uctuations as the eddy viscosity from SGS model is increased. The e�ect of anisotropic and
isotropic computational grid is in agreement with previous numerical simulations. In future
studies, the di�usion-velocity method in conjunction with eddy viscosity based SGS models
will be extended to three-dimensional calculations together with DNS calculations.

ACKNOWLEDGEMENTS

This research was supported by a grant from the National Sciences and Engineering Research Council
of Canada.

REFERENCES

1. Mans�eld JR, Knio OM, Meneveau C. A dynamic LES scheme for the vorticity transport equation: formulation
and a priori tests. Journal of Computational Physics 1988; 145:693–730.

2. Degond P, Mas-Gallic S. The weighted particle method for convection-di�usion equations. Part 1: the case of
isotropic viscosity. Mathematics of Computation 1989; 53(188):485–507.

3. Milane RE, Nourazar, S. On the turbulent di�usion velocity in mixing layer simulated using the vortex method
and the subgrid scale vorticity model. Mechanics Research Communication 1995; 22(4):327–333.

4. Milane RE, Nourazar S. Large-eddy simulation of mixing layer using vortex method: e�ect of subgrid-scale
models on early development. Mechanics Research Communication 1997; 24(2):215–221.

5. Mansour NN, Moin P, Reynolds WC, Ferziger JH. Improved method for turbulence. Turbulence and Shear
Flow I 1979; 386–401.

6. Bardina J, Ferziger JH, Reynolds WC. Improved subgrid models for large eddy simulation. AIAA 1980; 1357.
7. Greengard C. The core spreading vortex method approximates the wrong equation. Journal of Computational
Physics 1985; 61:345–348.

8. Cottet GH, Koumoutsakos PD. Vortex Methods: Theory and Practice. Cambridge University 2000.
9. Cottet GH. Arti�cial viscosity models for vortex and particle methods. Journal of Computational Physics 1996;
127:299–308.

10. Ogami Y, Akamatsu T. Viscous �ow simulation using the discrete vortex model—the di�usion velocity method.
Computers and Fluids 1991; 19(3=4):433–441.

11. Clarke NR, Tutty OR. Construction and validation of a discrete vortex method for the two-dimensional
incompressible Navier–Stokes equations. Computers and Fluids 1994; 23(6):751–783.

12. Ogami Y. A vortex method for heat-vortex interaction and fast summation technique. First International
Conference on Vortex Methods (Kobo). World Scienti�c, Singapore, 1999: 145:152.

13. Lacombe G, Mas-Gallic S. Presentation and analysis of a di�usion-velocity method. ESAIM Proceedings 1999;
7:225–233.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:837–860



860 R. E. MILANE

14. Beaudoin A, Huberson S, Rivoalen E. Simulation of anisotropic di�usion by means of a di�usion velocity
method. Journal of Computational Physics 2003; 186:122–135.

15. Abdolhosseini R, Milane RE. On the e�ect of vortex grid density in the vortex-in-cell simulation of mixing
layer. International Journal of Fluid Dynamics 2000; 13:161–183.

16. Inoue O. Double-frequency forcing on spatially growing mixing layers. Journal of Fluid Mechanics 1992;
234:553–581.

17. Ghoneim AF, Heidarinejad G. E�ect of two-dimensional shear layer dynamics on mixing and combustion at
low heat release. Combustion Science and Technology 1990; 72:79–99.

18. Sarpkaya E. Vortex element methods for �ow simulation. Advances in Applied Mathematics 1994; 31:
113–247.

19. Chorin AJ, Marsden JE. A Mathematical Introduction to Fluid Mechanics. Springer: Berlin, 1979.
20. Leonard A. Vortex methods for �ow simulation. Journal of Computational Physics 1980; 37:289.
21. Ghoneim AF, Givi P. Vortex-scalar element calculations of a di�usion �ame stabilized on a plane mixing layer.

NASA Technical Memograph 100133 ICOMP-87-4 1987.
22. Masutani SM, Bowman CT. The structure of a chemically reacting plane mixing layer. Journal of Fluid

Mechanics 1986; 172:93–126.
23. Batchelor GK. An Introduction to Fluid Dynamics. Cambridge University Press: Cambridge, 1967.
24. Chorin AJ. Numerical study of slightly viscous �ow. Journal of Fluid Mechanics 1973; 57:785–796.
25. Zahrai S, Bark FH, Karlsson RI. On anisotropic subgrid modelling. European Journal of Mechanics B/Fluids

1995; 14(4):459–486.
26. Sagaut P. Large eddy simulation for incompressible �ows. Scienti�c Computation. Springer: Berlin, 2002.
27. Vreman B, Geurts B, Kuerten H. Large-eddy simulation of the turbulent mixing layer. Journal of Fluid

Mechanics 1997; 339:357–390.
28. Ghoneim AF, Heidarinejad G, Krishnan A. Numerical simulation of a thermally strati�ed shear layer using the

vortex element method. Journal of Computational Physics 1988; 79:135.
29. Baker GR. The cloud-in-cell technique applied to the roll-up of the vortex sheets. Journal of Computational

Physics 1979; 31:76–95.
30. Monkewitz PA, Huerre P. In�uence of the velocity ratio on the spatial instability of mixing layers. Physics of

Fluids 1982; 25:7.
31. Oster D, Wygnanski I. The forced mixing layer between parallel streams. Journal of Fluid Mechanics 1982;

123:91–130.
32. Spencer BW, Jones BG. Statistical investigation of pressure and velocity �elds in turbulence two-stream mixing

layer. AIAA 4th Fluid and Plasma Dynamic Conference, 1971.
33. Deardo� J. A numerical study of three-dimensional turbulent channel �ow at large Reynolds numbers. Journal

of Fluid Mechanics 1970; 41(2):453–480.
34. Shumann U. Subgrid scale model for �nite di�erence simulations of turbulent �ows in plane channels and

annuli. Journal of Computational Physics 1975; 18:376–404.
35. Kaltenbach H-J. Cell aspect ratio dependence of anisotropy measures for resolved and subgrid scale stresses.

Journal of Computational Physics 1997; 136:399–410.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:837–860


